Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Pediatr Infect Dis J ; 42(4): 324-331, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2253622

ABSTRACT

OBJECTIVE: An understanding of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) transmission in schools is important. It is often difficult, using epidemiological information alone, to determine whether cases associated with schools represent multiple introductions from the community or transmission within the school. We describe the use of whole genome sequencing (WGS) in multiple schools to investigate outbreaks of SARS-CoV-2 in the pre-Omicron period. STUDY DESIGN: School outbreaks were identified for sequencing by local public health units based on multiple cases without known epidemiological links. Cases of SARS-CoV-2 from students and staff from 4 school outbreaks in Ontario underwent WGS and phylogenetic analysis. The epidemiological clinical cohort data and genomic cluster data are described to help further characterize these outbreaks. RESULTS: A total of 132 positive SARS-CoV-2 cases among students and staff from 4 school outbreaks were identified with 65 (49%) of cases able to be sequenced with high-quality genomic data. The 4 school outbreaks consisted of 53, 37, 21 and 21 positive cases; within each outbreak there were between 8 and 28 different clinical cohorts identified. Among the sequenced cases, between 3 and 7 genetic clusters, defined as different strains, were identified in each outbreak. We found genetically different viruses within several clinical cohorts. CONCLUSIONS: WGS, together with public health investigation, is a useful tool to investigate SARS-CoV-2 transmission within schools. Its early use has the potential to better understand when transmission may have occurred, can aid in evaluating how well mitigation interventions are working and has the potential to reduce unnecessary school closures when multiple genetic clusters are identified.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Phylogeny , COVID-19/epidemiology , Disease Outbreaks , Schools , Genomics
2.
Pediatr Transplant ; : e14450, 2022 Dec 14.
Article in English | MEDLINE | ID: covidwho-2161742
3.
CMAJ ; 194(31): E1089, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1993531
5.
CMAJ Open ; 9(4): E929-E939, 2021.
Article in English | MEDLINE | ID: covidwho-1468744

ABSTRACT

BACKGROUND: Health care workers have a critical role in the pandemic response to COVID-19 and may be at increased risk of infection. The objective of this study was to assess the seroprevalence of SARS-CoV-2 immunoglobulin G (IgG) antibodies among health care workers during and after the first wave of the pandemic. METHODS: We conducted a prospective multicentre cohort study involving health care workers in Ontario, Canada, to detect IgG antibodies against SARS-CoV-2. Blood samples and self-reported questionnaires were obtained at enrolment, at 6 weeks and at 12 weeks. A community hospital, tertiary care pediatric hospital and a combined adult-pediatric academic health centre enrolled participants from Apr. 1 to Nov. 13, 2020. Predictors of seropositivity were evaluated using a multivariable logistic regression, adjusted for clustering by hospital site. RESULTS: Among the 1062 health care workers participating, the median age was 40 years, and 834 (78.5%) were female. Overall, 57 (5.4%) were seropositive at any time point (2.5% when participants with prior infection confirmed by polymerase chain reaction testing were excluded). Seroprevalence was higher among those who had a known unprotected exposure to a patient with COVID-19 (p < 0.001) and those who had been contacted by public health because of a nonhospital exposure (p = 0.003). Providing direct care to patients with COVID-19 or working on a unit with a COVID-19 outbreak was not associated with higher seroprevalence. In multivariable logistic regression, presence of symptomatic contacts in the household was the strongest predictor of seropositivity (adjusted odds ratio 7.15, 95% confidence interval 5.42-9.41). INTERPRETATION: Health care workers exposed to household risk factors were more likely to be seropositive than those not exposed, highlighting the need to emphasize the importance of public health measures both inside and outside of the hospital.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , Cohort Studies , Female , Humans , Immunoglobulin G/blood , Logistic Models , Male , Middle Aged , Occupational Exposure/statistics & numerical data , Ontario/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2/genetics , Seroepidemiologic Studies , Tertiary Care Centers
6.
Lancet Reg Health Am ; 1: 100015, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1397539

ABSTRACT

BACKGROUND: The ongoing coronavirus disease 2019 (COVID-19) pandemic has resulted in implementation of public health measures worldwide to mitigate disease spread, including; travel restrictions, lockdowns, messaging on handwashing, use of face coverings and physical distancing. As the pandemic progresses, exceptional decreases in seasonal respiratory viruses are increasingly reported. We aimed to evaluate the impact of the pandemic on laboratory confirmed detection of seasonal non-SARS-CoV-2 respiratory viruses in Canada. METHODS: Epidemiologic data were obtained from the Canadian Respiratory Virus Detection Surveillance System. Weekly data from the week ending 30th August 2014 until the week ending the 13th March 2021 were analysed. We compared trends in laboratory detection and test volumes during the 2020/2021 season with pre-pandemic seasons from 2014 to 2019. FINDINGS: We observed a dramatically lower percentage of tests positive for all seasonal respiratory viruses during 2020-2021 compared to pre-pandemic seasons. For influenza A and B the percent positive decreased to 0•0015 and 0•0028 times that of pre-pandemic levels respectively and for RSV, the percent positive dropped to 0•0169 times that of pre-pandemic levels. Ongoing detection of enterovirus/rhinovirus occurred, with regional variation in the epidemic patterns and intensity. INTERPRETATION: We report an effective absence of the annual seasonal epidemic of most seasonal respiratory viruses in 2020/2021. This dramatic decrease is likely related to implementation of multi-layered public health measures during the pandemic. The impact of such measures may have relevance for public health practice in mitigating seasonal respiratory virus epidemics and for informing responses to future respiratory virus pandemics. FUNDING: No additional funding source was required for this study.

7.
mSphere ; 6(3)2021 05 05.
Article in English | MEDLINE | ID: covidwho-1218209

ABSTRACT

Genome-wide variation in SARS-CoV-2 reveals evolution and transmission dynamics which are critical considerations for disease control and prevention decisions. Here, we review estimates of the genome-wide viral mutation rates, summarize current COVID-19 case load in the province of Ontario, Canada (5 January 2021), and analyze published SARS-CoV-2 genomes from Ontario (collected prior to 24 November 2020) to test for more infectious genetic variants or lineages. The reported mutation rate (∼10-6 nucleotide [nt]-1 cycle-1) for SARS-CoV-2 is typical for coronaviruses. Analysis of published SARS-CoV-2 genomes revealed that the G614 spike protein mutation has dominated infections in Ontario and that SARS-CoV-2 lineages present in Ontario have not differed significantly in their rate of spread. These results suggest that the SARS-CoV-2 population circulating in Ontario has not changed significantly to date. However, ongoing genome monitoring is essential for identification of new variants and lineages that may contribute to increased viral transmission.


Subject(s)
Genetic Variation/genetics , Genome, Viral/genetics , Mutation Rate , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Base Sequence , COVID-19/pathology , Humans , Ontario , Phylogeny , Sequence Analysis, RNA
8.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: covidwho-1048659

ABSTRACT

The distribution of upper respiratory viral loads (VL) in asymptomatic children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. We assessed PCR cycle threshold (Ct) values and estimated VL in infected asymptomatic children diagnosed in nine pediatric hospital testing programs. Records for asymptomatic and symptomatic patients with positive clinical SARS-CoV-2 tests were reviewed. Ct values were (i) adjusted by centering each value around the institutional median Ct value from symptomatic children tested with that assay and (ii) converted to estimated VL (numbers of copies per milliliter) using internal or manufacturer data. Adjusted Ct values and estimated VL for asymptomatic versus symptomatic children (118 asymptomatic versus 197 symptomatic children aged 0 to 4 years, 79 asymptomatic versus 97 symptomatic children aged 5 to 9 years, 69 asymptomatic versus 75 symptomatic children aged 10 to 13 years, 73 asymptomatic versus 109 symptomatic children aged 14 to 17 years) were compared. The median adjusted Ct value for asymptomatic children was 10.3 cycles higher than for symptomatic children (P < 0.0001), and VL were 3 to 4 logs lower than for symptomatic children (P < 0.0001); differences were consistent (P < 0.0001) across all four age brackets. These differences were consistent across all institutions and by sex, ethnicity, and race. Asymptomatic children with diabetes (odds ratio [OR], 6.5; P = 0.01), a recent contact (OR, 2.3; P = 0.02), and testing for surveillance (OR, 2.7; P = 0.005) had higher estimated risks of having a Ct value in the lowest quartile than children without, while an immunocompromised status had no effect. Children with asymptomatic SARS-CoV-2 infection had lower levels of virus in their nasopharynx/oropharynx than symptomatic children, but the timing of infection relative to diagnosis likely impacted levels in asymptomatic children. Caution is recommended when choosing diagnostic tests for screening of asymptomatic children.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Viral Load , Adolescent , COVID-19 Testing/methods , Child , Child, Preschool , Female , Hospitals, Pediatric , Humans , Infant , Infant, Newborn , Male , Nasopharynx/virology , Oropharynx/virology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL